Injury to cultured human vascular endothelial cells by copper (CuSO4).
نویسندگان
چکیده
The effect of copper sulfate (CuSO4) on cultured human vascular endothelial (HVE) cells and cultured human fibroblasts (HAIN-55) was investigated. HVE cells were collected from umbilical veins by enzymatic digestion with collagenase. The viability, subsequent growth and DNA synthesis of both cell types were inhibited concentration-dependently by the addition of copper. The cytotoxic effect of copper on the morphology of these cells was also concentration-dependent. However, the cytotoxic effect of copper on the viability, subsequent growth and DNA synthesis was greater in HVE cells than in HAIN-55 cells. These results suggest that HVE cells are more susceptible to concentration-dependent copper cytotoxicity than HAIN-55 cells are, and that copper could induce vascular endothelial injury, which may be involved in the pathogenesis of cardiovascular disease.
منابع مشابه
Patterns of Vascular Endothelial Growth Factor Expression in Hematopoietic Malignant Cells
Background and Objective: Vascular endothelial growth factor (VEGF) is a cytokine which is overexpressed in many malignant cancers including leukemia. VEGF plays an important role in tumor invasion and metastasis. Determination of the pattern of VEGF expression in human leukemic cell lines could be useful not only in screening of new antileukemic agents but also to study the mechanism of their ...
متن کاملEndothelial cell injury due to copper-catalyzed hydrogen peroxide generation from homocysteine.
We have examined whether the toxic effects of homocysteine on cultured endothelial cells could result from the formation and action of hydrogen peroxide. In initial experiments with a cell-free system, micromolar amounts of copper were found to catalyze an oxygen-dependent oxidation of homocysteine. The molar ratio of homocysteine oxidized to oxygen consumed was approximately 4.0, which suggest...
متن کاملتأثیر کرایوپرزرویشن و انجماد خشک در کشت سلولهای اندوتلیال بر روی پرده آمنیون انسانی
Background & Aims: Human amniotic membrane has some specific properties making it an appropriate biomaterial for using in vascular tissue engineering. In this study, amniotic membrane was preserved with different methods. Effects of preservation on amniotic extracellular matrix and adhesion of cultured endothelial cells to membrane were compared with fresh samples of amniotic membrane. Mate...
متن کاملEffects of alpha-mangostin on memory senescence induced by high glucose in human umbilical vein endothelial cells
Objective(s): Hyperglycemia induces cellular senescence in various body cells, such as vascular endothelial cells. Since the vessels are highly distributed in the body and nourish all tissues, vascular damages cause diabetes complications such as kidney failure and visual impairment. Alpha-mangostin is a xanthone found in mangosteen fruit with protective effects in met...
متن کاملHuman Trophoblast Progenitor Cells Express and Release Angiogenic Factors
Trophoblast stem cells develop from polar trophoectoderm and give rise to the cells that generate the placenta. Trophoblast cells are responsible for the uterinal invasion and vascular remodeling during the implantation of the embryo. However this knowledge is not yet to be confirmed for trophoblast progenitor cells (TPCs). In this study, we aimed to demonstrate that human TPCs (hTPCs) express ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nihon eiseigaku zasshi. Japanese journal of hygiene
دوره 47 5 شماره
صفحات -
تاریخ انتشار 1992